St. Paulinus Catholic Primary Academy
Part of the Blessed Peter Snow Catholic Academy Trust Inspiring all to live, learn and love in the light of Jesus.
(cf John 8:12)

Calculation Policy 2023-2026

Version control

Version number	Date	Revisions made	By who?	Approval date
V01	$07 / 09 / 23$	Checked for accuracy	E. McHale	

Inspiring all to live, learn and love in the light of Jesus.
(cf John 8:12)

Calculation Policy

School Mission
"Inspiring all to live, learn and love in the light of Jesus"

Introduction

At the centre of the mastery approach to the teaching of mathematics is the belief that all pupils have the potential to succeed. They should have access to the same curriculum content and, rather than being extended with new learning, they should deepen their conceptual understanding by tackling challenging and varied problems. Similarly with calculation strategies, pupils must not simply rote learn procedures but demonstrate their understanding of these procedures through the use of concrete materials and pictorial representations.

This policy outlines the different calculation strategies that should be taught and used in Years 1-4, in line with the requirements of the 2014 Primary National Curriculum.

Background

The 2014 Primary National Curriculum for mathematics differs from its predecessor in many ways. Alongside the end of Key Stage year expectations, there are suggested goals for each year; there is also an emphasis on depth before breadth and a greater expectation of what pupils should achieve. In addition, there is a whole new assessment method, as the removal of levels gives schools greater freedom to develop and use their own systems.

One of the key differences is the level of detail included, indicating what pupils should be learning and when. This is suggested content for each year group, but schools have been given autonomy to introduce content earlier or later, with the expectation that by the end of each key stage the required content has been covered.

For example, in Year 2, it is suggested that pupils should be able to 'add and subtract one-digit and two-digit numbers to 20, including zero' and a few years later, in Year 5, they should be able to 'add and subtract whole numbers with more than four digits, including using formal written methods (columnar addition and subtraction)'.

In many ways, these specific objectives make it easier for teachers to plan a coherent approach to the development of pupils' calculation skills. However, the expectation of using formal methods is rightly coupled with the explicit requirement for pupils to use concrete materials and create pictorial representations - a key component of the mastery approach.

Purpose

The purpose of this policy is twofold. Firstly, it makes teachers aware of the strategies that pupils are formally taught within each year group that will support them to perform mental and written calculations.

Part of the Blessed Peter Snow Catholic Academy Trust
Inspiring all to live, learn and love in the light of Jesus.
(cf John 8:12)

Secondly, it supports teachers in identifying appropriate pictorial representations and concrete materials to help develop understanding.
The policy only details the strategies; teachers must plan opportunities for pupils to apply these; for example, when solving problems, or where opportunities emerge elsewhere in the curriculum.

How to use the policy

For ease of reference, the strategies and examples contained in this policy are crossreferenced with objectives from the 2014 Maths Programme of Study. For each of the four rules of number, different strategies are laid out, together with examples of what concrete materials can be used and how, along with suggested pictorial representations. Please note that the concrete and representation examples are not exhaustive, and teachers and pupils may well come up with alternatives. Where necessary, additional guidance is given to support in teaching the given strategies.

Please note that the principle of the concrete-pictorial-abstract (CPA) approach is that for pupils to have a true understanding of a mathematical concept, they need to master all three phases. Reinforcement is achieved by going back and forth between these representations. For example, if a child has moved on from the concrete to the pictorial, it does not mean that the concrete cannot be used alongside the pictorial. Or if a child is working in the abstract, 'proving' something or 'working out' could involve use of the concrete or pictorial. In short, these are not always 'exclusive' representations.

Mathematical language

The 2014 National Curriculum is explicit in articulating the importance of pupils using the correct mathematical language as a central part of their learning. Indeed, in certain year groups, the non- statutory guidance highlights the requirement for pupils to extend their language around certain concepts.

It is therefore essential that teaching using the strategies outlined in this policy is accompanied by the use of appropriate mathematical vocabulary. New vocabulary should be introduced in a suitable context (for example, with relevant real objects, apparatus, pictures or diagrams) and explained carefully. High expectations of the mathematical language used are essential, with teachers only accepting what is correct.

2014 Maths Programme of Study

\checkmark	x
ones	units
is equal to	equals
zero	oh (the letter O)

Exemplification

You will see that throughout this document, calculations are presented in a variety of ways,. It is important for pupils' mathematical understanding to experience and work with calculations and missing numbers in different positions relative to the $=$ symbol. Examples used in classwork and independent work should reflect this.

Part of the Blessed Peter Snow Catholic Academy Trust Inspiring all to live, learn and love in the light of Jesus.
(cf John 8:12)

Estimation

Pupils are expected to use their developing number sense from Year 1 to make predictions about the answers to their calculations. As their range of mental strategies increases, these predictions and, later, estimates should become increasingly sophisticated and accurate. All teaching of calculation should emphasise the importance of making and using these estimates to check, first, the sense and, later, the accuracy of their calculations.

Progression in calculations

Year 1

National Curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- Add and subtract one-digit and two-digit numbers to 100, including zero (N.B. Year 1 N.C. objective is to do this with numbers to 20).
- Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones, a two-digit number and tens, 2 two-digit numbers; add 3 one-digit numbers (Year 2).
- Represent and use number bonds and related subtraction factswithin 20.
- Given a number, identify 1 more and 1 less.
- Show that addition of two numbers can be done in any order (commutative) but subtraction of one number from another cannot (Year 2).
- Recognise the inverse relationship between addition and subtraction and use this to solve missing number problems (Year 2).

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equal (=) signs.
- Solve one-step problems that involve addition and subtraction, using concrete objects and

Part of the Blessed Peter Snow Catholic Academy Trust
Inspiring all to live, learn and love in the light of Jesus.
(cf John 8:12)
pictorial representations, and missing number problems, such as $7=\square-9$.

- Solve problems with addition and subtraction:
- Using concrete objects and pictorial representations, including those involving numbers, quantities and measures
- Applying their increasing knowledge of mental methods

Addition

ST. PAULINUS CATHOLIC PRIMARY SCHOOL

Strategy \& guidance	CPA
'Make ten' strategy Pupils should be encouraged to start at the bigger number and use the smaller number to make ten. The colours of the beads on the bead string make it clear how many more need to be added to make ten. Also, the empty spaces on the ten frame make it clear how many more are needed to make ten.	$6+5=11$ $4+9=13$
Adding 1, 2, 3 more Here the emphasis should be on the language rather than the strategy. As pupils are using the beadstring, ensure that they are explaining using language such as; ' 1 more than 5 is equal to 6 .' '2 more than 5 is $7 .{ }^{\prime}$ ' 8 is 3 more than 5.'	1 more than $5,5+1=6$ 2 more than $5,5+2=7$

ST. PAULINUS CATHOLIC PRIMARY SCHOOL

Subtraction

Strategy \& guidance	CPA
Taking away from the ones When this is first introduced, the concrete representation should be based upon the diagram. Real objects should be placed on top of the images as one-to-one correspondence so that pupils can take them away, progressing to representing the group of ten with a tens rod and ones with ones cubes.	
Counting back Subtracting 1, 2, or 3 by counting back Pupils should be encouraged to rely on number bonds knowledge as time goes on, rather than using counting back as their main strategy.	

ST. PAULINUS CATHOLIC PRIMARY SCHOOL

Strategy \& guidance	CPA
Part-part-whole Teach both addition and subtraction alongside each other, as the pupils will use this model to identify the link between them. Pupils start with ten cubes placed on the whole. They then remove what is being taken away from the whole and place it on one of the parts. The remaining cubes are the other part and also the answer. These can be moved into the second part space.	$10-6=4$
Make ten strategy Single digit number from a 2digit number Pupils identify how many need to be taken away to make ten first. Then they take away the rest to reach the answer.	$14-5=9$ a) aba
Regroup a ten into 10 ones After the initial introduction, the Dienes blocks should be placed on a place value chart to support place value understanding. This will support pupils when they later use the column method.	

ST. PAULINUS CATHOLIC PRIMARY SCHOOL

| Strategy \& guidance |
| :--- | :--- |
| Taking away from the tens
 Pupils should identify that
 they can also take away
 from the tens and get the
 same answer.
 This reinforces their
 knowledge of number bonds
 to 10 and develops their
 application of number bonds
 for mental strategies.
 Partitioning to subtract
 without regrouping
 Dienes blocks on a place
 value chart (developing into
 using images on the chart)
 should be used, as when
 adding 2-digit numbers,
 reinforcing the main concept
 of place value for Year 1.
 When not regrouping,
 partitioning is a mental
 strategy and does not need
 formal recording in
 columns. This
 representation prepares pages to support with
 them for using column
 subtraction with formal
 recording.
 See additional guidance on |

ST. PAULINUS CATHOLIC PRIMARY SCHOOL

Strategy \& guidance	CPA			
Subtracting multiples of ten Using the vocabulary of 1 ten, 2 tens, 3 tens etc. alongside $10,20,30$ is important as pupils need to understand that it is a ten not a one that is being taken away.	$40=60-20$			$38-10=28$
Column method with regrouping This example shows how pupils should work practically when being introduced to this method. There is no formal recording in columns in Year 1 but this practical work will prepare pupils for formal methods in Year 2. See additional guidance on unit pages to support with this method.			$=10$ orves ETE E E E E criver 보토틀 ones En E $\times x=5$ ervea $x=$ $x x=5$ $x \times=$ $x x=5$	

ST. PAULINUS CATHOLIC PRIMARY SCHOOL

National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Multiplication

Strategy \& guidance		CPA
Skip counting in multiples of $\mathbf{2 , 5}, \mathbf{1 0}$ from zero The representation for the amount of groups supports pupils' understanding of the written equation. So two groups of 2 are 2, 4. Or five groups of 2 are 2, 4, 6, 8, 10. Count the groups as pupils are skip counting. Number lines can be used in the same way as the bead string. Pupils can use their fingers as they are skip counting.		

ST. PAULINUS CATHOLIC PRIMARY SCHOOL

Strategy \& guidance

Making equal groups and
counting the total
How this would be
represented as an equation
will vary. This could be 2×4
or 4×2.
The importance should be
placed on the vocabulary
used alongside the equation.
So this picture could
represent 2 groups of 4 or 4
twice.

Solve multiplications using
repeated addition

Division

| Strategy \& guidance | |
| :--- | :--- | :--- | :--- |
| Sharing objects into
 groups
 Pupils should become
 familiar with division
 equations through
 working practically.
 The division symbol is not
 formally taught at this
 stage. | $10 \div 2=5$ |

Progression in calculations

Year 2

National Curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones; a two-digit number and tens; 2 two-digit numbers; adding three one-digit numbers.
- Add and subtract numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds (Year 3).
- Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100.
- Find 10 or 100 more or less than a given number (Year 3).
- Show that addition of two numbers can be done in any order (commutative) but subtraction of one number from another cannot.
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing numberproblems.***
- Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction (Year 3).

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- Solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures; apply increasing knowledge of mental and written methods.
- Solve problems, including missing number problems, using number facts, place value and more complex addition and subtraction. (Year 3)

Addition

Strategy \& guidance	CPA
Partitioning one number, then adding tens and ones Pupils can choose themselves which of the numbers they wish to partition. Pupils will begin to see when this method is more efficient than adding tens and taking away the extra ones, as shown.	
Rounding one number, then adding the tens and taking away extra ones Pupils will develop a sense of efficiency with this method, beginning to see when rounding and adjusting is more efficient than adding tens and then ones.	$22+17=39$

ST. PAULINUS CATHOLIC PRIMARY SCHOOL

ST. PAULINUS CATHOLIC PRIMARY SCHOOL

Strategy \& guidance	CPA
Part-part-whole Pupils explore the different ways of making 20. They can do this with all numbers using the same representations. This model develops knowledge of the inverse relationship between addition and subtraction and is used to find the answer to missing number problems.	$\begin{gathered} 20=\square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \\ \square+1=16 \\ 1+\square=16 \\ \square=-\square-\square=1 \end{gathered}$
Make ten strategy How pupils choose to apply this strategy is up to them; however, the focus should always be on efficiency.	$\begin{array}{r} 38+15= \\ 1 \\ 2 \\ 10 \end{array}$

Strategy \& guidance	CPA									
Using known facts Dienes blocks should be used alongside pictorial and abstract representations when introducing this strategy.	$\\|\\|+\\|\\|\\|=\\|\\|\\|$	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$								

Subtraction

Strategy \& guidance		CPA
Subtracting tens and ones		
Pupils must be taught to partition the second number for this strategy.		
Pupils will begin to see when this method is more efficient than subtracting tens and adding the extra ones, as shown.		

Strategy \& guidance		CPA
Subtracting tens and adding extra ones		
Pupils must be taught to round the number that is being subtracted. Pupils will develop a sense of efficiency with this method, beginning to identify when this method is more efficient than subtracting tens and then ones. Counting back in multiples of ten and one hundred		

ST. PAULINUS CATHOLIC PRIMARY SCHOOL

ST. PAULINUS CATHOLIC PRIMARY SCHOOL

Strategy \& guidance	CPA
Column method with regrouping As in Year 1, the focus for the column method is to develop a strong understanding of place value and pupils should always be using concrete manipulatives alongside the pictorial. Pupils are introduced to calculations that require two instances of regrouping (initially from tens to one and then from hundreds to tens). E.g. 232-157 and are given plenty of practice using concrete manipulatives and images alongside their formal written methods, ensuring that important steps are not missed in the recording. Caution should be exercised on introducing calculations requiring 'regrouping to regroup' (e.g. 204-137) ensuring ample teacher modelling using concrete manipulatives and images.	 hundreds tens ones $\begin{array}{r} 147 \\ -\quad 18 \\ \hline 129 \\ \hline \end{array}$

National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers.
- Recall and use multiplication and division facts for the 3 and 4 multiplication tables (Year 3).
- Show that multiplication of two numbers can be done in any order (commutative) but division of one number by another cannot.

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equal (=)signs.
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in context.

ST. PAULINUS CATHOLIC PRIMARY SCHOOL

Multiplication

Strategy \& guidance
Arrays to represent
multiplication equations
loncrete manipulatives
and images of familiar
objects begin to be
organised into arrays and,
later, are shown alongside
dot arrays. It is important
to discuss with pupils how
arrays can be useful.
Pupils begin to understand
multiplication in a more
abstract fashion, applying
their skip counting skills to
identify the multiples of the
2x, 5x and lox tables.
The relationship between
multiplication and division
also begins to be
demonstrated.

Strategy \& guidance	CPA
Bar modelling to represent the parts, the whole and the number of parts in multiplication word problems Cuisenaire rods can be used to create bar models that represent multiplications.	There are 4 bags of sweets with 3 sweets in each bag. How many sweets are there altogether? There are 3 school bags with 5 books in each one. How many books are there altogether?
Use of part-part- whole model to establish the inverse relationship between multiplication and division This link should be made explicit from early on, using the language of the part-part-whole model, so that pupils develop an early understanding of the relationship between multiplication and division. Bar models (with Cuisenaire rods) should be used to identify the whole, the size of the parts and the number of parts.	What multiplication and division equations can you write for each bar model? Prove that the equations are correct using a bead string. \square \times \square $=$ \square \square \div \square $=$

Strategy \& guidance	
Doubling to derive new multiplication facts	
Pupils learn that known facts from easier times tables can be used to derive facts from related times tables using doubling as a strategy.	
At this stage they double the $2 x$ table facts to derive the $4 x$ table facts.	

Division

Strategy \& guidance
Division as sharing Here, division is shown as sharing. If we have ten pairs of scissors and we share them between two pots, there will be 5 pairs of scissors in each pot.
Here, division is shown as grouping. If we have ten forks and we put them into groups of two, there are 5 groups.
Division as grouping

| Strategy \& guidance | |
| :--- | :--- | :--- |
| Use of part-part-whole
 model to represent
 division equations and to
 emphasise the relationship
 between division and
 multiplication | |
| Pupils use arrays of concrete
 manipulatives and images of
 familiar objects to find
 division equations. | |
| They begin to use dot arrays
 to develop a more abstract
 concept of division. | $15 \div 5=03$ |

Progression in calculations

Year 3

National Curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- add and subtract numbers mentally, including:
- a three-digit number and ones
- a three-digit number and tens
- a three-digit number and hundreds
- add and subtract numbers with up to four digits, using formal written methods of columnar addition and subtraction (four digits is Year 4)
- find 10 or 100 more or less than a given number
- find 1000 more or less than a given number (Year 4)
- estimate the answer to a calculation and use inverse operations to checkanswers***

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction

Addition \& Subtraction

Strategy \& guidance	CPA
Add and subtract numbers mentally, including: - a three-digit number and ones; - a three-digit number and tens; - a three-digit number and hundreds Pupils learn that this is an appropriate strategy when they are able to use known number-facts and other mental strategies to complete mental calculations with accuracy. To begin with, some pupils will prefer to use this strategy only when there is no need to regroup, using number facts within 10 and derivations. More confident pupils might choose from a range of mental strategies that avoid regrouping, including (but not exhaustively): known number facts within 20, derived number facts, make ten, compensation (see Year 2 guidance for exemplification of these - the use of concrete manipulatives other than Dienes blocks is important in reinforcing the use of these other strategies). It is important that pupils are given plenty of (scaffolded) practice at choosing their own strategies to complete calculations efficiently and accurately. Explicit links need to be made between familiar number facts and the calculations that they can be useful for and pupils need to be encouraged to aim for efficiency.	See Year 2 - using the same strategies and, where required, manipulatives with numbers appropriate to the unit pupils are working within (3-digit or 4digit numbers) e.g. With some regrouping

Strategy \& guidance	CPA
Written column method for calculations that require regrouping with up to 4-digit numbers Dienes blocks should be used alongside the pictorial representations during direct teaching and can be used by pupils both for support and challenge. Place value counters can also be introduced at this stage. This work revises and reinforces ideas from Key Stage 1, including the focus on place value - see Year 2 exemplification. It is vital that pupils are made aware that this is one possible strategy and that they must decide which is the most efficient to make an accurate calculation. Direct teaching of the columnar method should require at least one element of regrouping, so that pupils are clear about when it is most useful to use it. Asking them 'Can you think of a more efficient method?' will challenge them to apply their number sense / number facts to use efficient mental methods where possible. As in Year 2, pupils should be given plenty of practice with calculations that require multiple separate instances of regrouping. In Year 3 they become more familiar with calculations that require 'regrouping to regroup'. Understanding must be secured through the considered use of manipulatives and images, combined with careful use of language. Pupils should be challenged as to whether this is the most efficient method, considering whether mental methods (such as counting on, using known number facts, compensation etc.) may be likelier to produce an accurate solution. Pupils requiring support might develop their confidence in the written method using numbers that require no regrouping. See additional guidance on unit pages for extra guidance on this strategy.	See Year 2 - Using the same strategies and concrete manipulatives but working with numbers that are appropriate to the unit pupils are working on. e.g. Regrouping (including multiple separate instances) 'Regrouping to regroup' 204 - 137 1035-851

| Strategy \& guidance | |
| :--- | :--- | :--- |
| Find 10, $\mathbf{1 0 0}$ and $\mathbf{1 0 0 0}$ more or less than a given
 number | |
| As pupils become familiar with numbers up to 1000,
 place value should be emphasised and comparisons
 drawn between adding tens, hundreds (revision - see
 Year $\mathbf{2}$ guidance) and thousands, including use of
 concrete manipulatives and appropriate images. | |
| After initial teaching, this should be incorporated into
 transition activities and practised regularly. | |

National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- count from 0 in multiples of $4,8,50$ and 100
- recall and use multiplication and division facts for the $3,4,6$, and 8 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental methods
- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects

Multiplication

| Strategy \& guidance |
| :--- | :--- |
| Doubling to derive new
 multiplication facts
 Pupils continue to make use
 of the idea that facts from
 easier times tables can be
 used to derive facts from
 related times tables using
 doubling as a strategy.
 This builds on the doubling
 strategy from Year 2 . |
| Skip counting in multiples of
 2, $\mathbf{3}, \mathbf{4}, \mathbf{5}$,
 6, 8 and 10
 Rehearsal of previously
 learnt tables as well as new
 content for Year 3 should be
 incorporated into transition
 activities and practised
 regularly. |

ST. PAULINUS CATHOLIC PRIMARY SCHOOL

Strategy \& guidance	CPA
Use of part-part- whole model with arrays and bar models to establish commutativity and inverse relationship between multiplication and division In these contexts pupils are able to identify all the equations in a fact family.	
Ten times bigger Pupils's work on this must be firmly based on concrete representations - the language of ten times bigger must be well modelled and understood to prevent the numerical misconception of 'adding 0 '.	
Multiplying by 10, 100 and 1000 Building on the ten times bigger work, pupils use appropriate Dienes blocks and place value counters to multiply 2, 3, 4,5 and 10 by 10,100 and 1000.	$\begin{aligned} & 5 \times 1=5 \\ & 5 \times 10=50 \\ & 3 \times 100=\mathbf{3 0 0} \end{aligned}$

ST. PAULINUS CATHOLIC PRIMARY SCHOOL

| Strategy \& guidance | $5=1 \times 5$ |
| :--- | :--- | :--- |
| Using known facts for
 multiplying by multiples of
 $\mathbf{1 0 , 1 0 0}$ and $\mathbf{1 0 0 0}$
 Pupils' growing
 understanding of place
 value, allows them to make
 use of known facts to derive
 multiplications using
 powers of 10.
 It is important to use tables
 with which they are already
 familiar (i.e. not 7 or 9 tables
 in Year 3) | $50=10 \times 5$ |

ST. PAULINUS CATHOLIC PRIMARY SCHOOL

ST. PAULINUS CATHOLIC PRIMARY SCHOOL

Division

Strategy \& guidance	CPA
Dividing multiples of 10, 100 and 1000 by 10, 100 and 1000 Pupils use the strategy of sharing into equal groups of tens, hundreds or thousands to reinforce their understanding of place value and the concept of division as sharing into equal groups. They master this skill with calculations where no partitioning is required, to prepare them for the next step	
Division by partitioning and sharing into equal groups with no regrouping required Pupils apply the skills of sharing into equal groups, dividing 2-digit numbers by 3, 4 and 5. They should be encouraged not to use this strategy to divide by 2 (using halving instead).	$48 \div 4=$

Progression in calculations

Year 4

National Curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- add and subtract numbers with up to four digits, using the formal written methods of columnar addition and subtraction where appropriate
- find 1000 more or less than a given number (Year 4)
- estimate answers and use inverse operations to check answers to a calculation***
N.B. There is no explicit reference to mental calculation strategies in the programmes of study for Year 4 in the national curriculum. However, with an overall aim for fluency, appropriate mental strategies should always be considered before resorting to formal written procedures, with the emphasis on pupils making their own choices from and increasingly sophisticated range of strategies.

The following objectives should be planned for lessons where new strategies are being introduced

 and developed:- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why
- solve simple measure and money problems involving fractions and decimals to two decimal places

Addition \& Subtraction

Strategy \& guidance	CPA		
Add and subtract multiples of 10, $\mathbf{1 0 0}$ and $\mathbf{1 0 0 0}$ mentally	 subtraction, remembering that use of concrete manipulatives and images in both teaching and reasoning activities will help to secure understanding and develop mastery.		
knowledge and are calculating mentally both with			
calculations that do not require regrouping and with			
those that do.		\quad	Initially they count on and back in steps of ten, one
:---			
hundred and one thousand. These should be practised			
regularly, ensuring that boundaries where more than			
one digit changes are included.	\quad	In Year 4, pupils extend this knowledge to mentally	
:---			
adding and subtracting multiples of 10, 100 and 1000.			
Counting in different multiples of 10, 100 and 1000 should be incorporated into transition activities and practised regularly.			
Written column methods for addition and subtraction			

National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- count from 0 in multiples of $6,7,9,25$ and 1000
- recall and use multiplication and division facts for multiplication tables up to 12×12
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- recognise and use factor pairs and commutativity in mental calculations
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects

Multiplication

| Strategy \& guidance | |
| :--- | :--- | :--- |
| Using known facts and
 place value for mental
 multiplication involving
 multiples of $\mathbf{1 0}$ and $\mathbf{1 0 0}$ | $7 \times 30=210$ |
| Pupils use their growing | |
| knowledge of multiplication | |
| facts, place value and | |
| derived facts to multiply | |
| mentally. | |
| Emphasis is place on
 understanding the
 relationship (10 times or 100
 times greater) between a
 known number fact and one
 to be derived, allowing far
 larger 'fact families' to be
 derived from a single known
 number fact. | |
| Knowledge of commutativity
 is
 further extended and
 applied to find a range of
 related facts. | $700 \times 3=2100$ |

Strategy \& guidance	
Mental multiplication of	
any 2- digit number by a 1-	
digit number, using	
distributive law	
Pupils build on mental	
multiplication strategies and	
develop an explicit	
understanding of	
distributive law, which	
allows them to explore new	
strategies to make more	
efficient calculations.	
As well as partitioning into	
tens and ones (a familiar	
strategy), they begin to	
explore compensating	
strategies and factorisation	
to find the most efficient	
solution to a calculation.	
Mental multiplication of 31-	
digit numbers, using the	
associative law	
Pupils first learn that	
multiplication can be	
performed in any order,	
before applying this to	
choose the most efficient	
order to complete	
calculations, based on their	
increasingly sophisticated	
number facts and place	
value knowledge.	

Strategy \& guidance	CPA
Short multiplication of 3digit number by 1-digit number To begin with pupils are presented with calculations that require no regrouping or only regrouping from the ones to the tens. Their conceptual understanding is supported by the concomitant use of place value counters, both during teacher demonstrations and during their own practice. With practice pupils will be able to regroup in any column, including from the hundreds to the thousands, including being able to multiply numbers containing zero and regrouping through multiple columns in a single calculation.	Exemplification of this process is best understood through viewing the Year 4 Unit 3 'Training Task' (which can be found slightly further down the page from the Unit Tutorial here in the online toolkit) $228 \times 3=$ \square $200 \times 3=$ $20 \times 3=$ 228 $\begin{array}{r} \\ \times \quad 3 \\ \hline\end{array}$ \qquad

Division

Strategy \& guidance	CPA
Short division of 4-digit numbers by 1-digit numbers Pupils start with dividing 4digit numbers by 2, 3 and 4, where no regrouping is required. Place value counters are used simultaneously in a place value chart, to develop conceptual understanding. They progress to calculations that require regrouping in the hundreds or tens columns. Pupils build on their conceptual knowledge of division to become confident with dividing numbers where the tens digit is smaller than the divisor, extending this to any digit being smaller than the divisor.	Exemplification of this process is best understood through viewing the Year 4 Unit 3 'Training Task' (which can be found slightly further down the page from the Unit Tutorial here in the online toolkit)
Division of a one- or twodigit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths	Exemplification of this will be added in the coming months.

Progression in calculations

Year 5

National Curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- add and subtract numbers with up to four digits, using the formal written methods of columnar addition and subtraction where appropriate

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction

Addition \& Subtraction

Strategy \& guidance	
2. Augmentation Structure (counting on) Partition into hundreds, tens and ones and recombine.	
Either partition both numbers and recombine or partition the second number only e.g. $358+73=358+70+3$ $=428+3$ $=431$	

Strategy \& guidance	CPA
2. Reduction Structure - counting back. Subtract the nearest multiple of 10 or 100 , then adjust. Continue as in Year 2, 3 and 4 but with appropriate numbers. eg 729-47= Round 729 to 730 . Subtract 47. Subtract the 1 that was added to make 730 . Use known number facts and place value to subtract Include decimal numbers (tenths) $6.1-2.4=3.7$	
3. Comparison Structure. Find a difference by counting up e.g. $8006-2993=5013$	
4. Complementary addition (how many more to make) Reduce the number of steps to make the calculation more efficient. Extend to 2 places of decimals	
Continue to use number lines and informal jottings to solve mental calculations. Find a difference by counting up Eg. $8006-2993=5013$ This can be modelled on an empty number line using complimentary addition.	

Strategy \& guidance	CPA
Standard written methods	
Estimate answer using rounding before calculating.	
Continue using expanded methods until place value is fully understood. Extend to 4 digit numbers Th H T U or TU.th in the context of solving problems involving money or measurement. Follow progression outlined for Year 4 in column to the left.	
Once a child is ready to work with 4 digit go through same progression.	
Start with no exchange, then one exchange in the T column, moving onto one exchange in the H column and finally one exchange in the Th column.	
Extend to two exchanges. (TH or Th H). Extend to three exchange in TH H and T)	
Deal with zeros in this order - noting the position of the zeros in each minuend (first number).	
1520-724	
1502-274	
1036-274	
1700-274	
1009-274	
1000-274	
eg. $3217-1682$	
$\begin{array}{ll}\text { Th H } & \text { T }\end{array}$	
$\begin{array}{llll}3000 & 200 & 10 & 7\end{array}$	
$\begin{array}{llll}1000 & 600 & 80 & 2\end{array}$	
$\checkmark \quad!\quad!\quad$!	
Look at the numbers involved in the calculation. In the example above an exchange is required in the thousands and hundreds column.	
First exchange	
Exchange one thousand for 10 hundreds:	
$\begin{array}{llll}2000 & 1200 & 10 & 7\end{array}$	
Second exchange:	
Exchange one hundred for ten tens:	
$\begin{array}{llll}2000 & 1100 & 110 & 7\end{array}$	
Now it is possible to subtract 1682.	
$\begin{array}{rrrr} 2000 & 1100 & 110 & 7 \\ -1000 & 600 & 80 & 2 \\ \hline \end{array}$	
1000 500 30 5	
Recombine numbers. The difference is $\underline{1535}$	
Check answer by adding 1535 to 1682 on a calculator.	
NB. Strategies method:	

Multiplication

Strategy \& guidance	CPA
Solve problems involving multiplication, including using their knowledge of multiplication and division, and a combination of these, including understanding the meaning of the equals sign. Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy. Understand the distributive law in multiplication. Distributivity can be expressed as $a(b+c)=a b+a c$. Numbers can be partitioned to make them easier to calculate. Children use brackets to indicate which parts of the calculation will be carried out first. Estimate answer first. 147×6 is approximately $150 \times 6=600$ Partition numbers and use brackets: $\begin{aligned} & 147 \times 6=(100 \times 6)+(40 \times 6)+(7 \times 6)= \\ & 600+240+42=882 \end{aligned}$	
Standard Written Method Continue using the grid method but for HTU x U Extend to long multiplication $15 \times 13=$ Partition 15 into 10 and 5 and 13 into 10 and 3. Build the model using Cuisenaire rods. Instead of laying out 10×10, you can replace this with a Base 10 'flat' (100) Draw an area diagram (rough sketch) on plain paper.	

Strategy \& guidance	
Add the carried over hundred to make 400.	
Write 4 in the hundreds column.	
Now add the partial products together to get the product.	
$294+420=714$	
Order of difficulty for long multiplication:	
1. TU x TU (no carrying)	
2. TU x TU (with carrying)	
3. Carrying but keeping in the same decade	
4. Carrying and going into the next decade	
5 Extend to HTU x TU or Th H T U x TU	
6. Dealing with zeros eg 202 x 14 or 430×60	
7. Multiply by multiples of 10 eg 430×60	

Division

Strategy \& guidance	CPA
Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appriately for the context.	
Solve problems involving multiplication and division and a combination of these, including understanding the meaning of the $=$ sign and scaling by simple fractions. (Build a model to scale factor 0.5 eg halve the dimenson).	
Solve word problems and engage in problem solving involving division. Understand fractions as operators.	
Find missing numbers using the grid method of multiplication. Draw attention to related division facts and place value. (This model is an expanded version of short division.)	
$\mathrm{X} \quad \square \quad \square$	
$\begin{array}{llll}7 & 2100 & 280 & 42\end{array}$	
$\begin{aligned} 2100 \div 7 & =300 \\ 280 \div 7 & =40 \\ 42 \div 7 & =6 \end{aligned}$	
$300+40+6=346$	

Strategy \& guidance	CPA
Grouping in division (with remainders)	
Develop an understanding of division as chunking:	
Reduce number of steps in 'chunking' method by removing larger 'chunks' at a time using knowledge of place value and tables facts.	
eg $41 \div 3=$	
$\begin{aligned} & \frac{14}{3)} \\ & \frac{32}{12}(3 \times 10) \\ & \frac{12}{0}(3 \times 4) \end{aligned}$	
The quotient is 14.	
Here is an example with a remainder: $\begin{array}{ll} 6 \longdiv { 1 9 6 } & \\ -\frac{60}{136} & 6 \times 10 \\ -\frac{60}{76} & 6 \times 10 \\ -\frac{60}{16} & 6 \times 10 \\ -\frac{12}{4} & 6 \times \frac{2}{32} \end{array}$ Answer: 32 R 4	
Remainders	
Pupils interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding (for example $98 \div 4=98 / 4=24 \mathrm{r} 2=241 / 2=24.5=25$) Solve problems where the divisor is greater than the dividend. $\begin{array}{r} \frac{0.3}{18.0} \\ \frac{14.4}{3.6} \end{array}$	

Strategy \& guidance	
Short division	
Pupils practise and extend their use of the formal written	
methods of short division.	
Civide numbers up to 4 digits by a one-digit number using the	
formal written method of short division and interpret	
remainders appropriately for the context.	

Progression in calculations

Year 6

National Curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- add and subtract numbers with up to four digits, using the formal written methods of columnar addition and subtraction where appropriate

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction

Addition \& Subtraction

Strategy \& guidance	CPA
Understand the operation of addition (Build on previous years) Before they use a written method to add decimal numbers, children estimate the answer. For example, they calculate $13.86+9.481$ or and use rounding to check that their answer is approximately 23 respectively.	
1. Aggregation Structure - partitioning and recombining Children discuss the efficiency of their written methods. They consider different calculations and choose the appropriate method: an efficient written method a mental method (with jottings if necessary), or using a calculator Extend to numbers with any number of digits and decimals with 1 , 2 and/or 3 decimal places. $13.86+9.481=23.341$ Alignment of digits is essential where there are a different number of digits. (Or add zero as a place holder to make both numbers have the same number of digits. $\begin{array}{r} 13.86 \\ +\quad 9.481 \\ \hline 23.341 \\ \hline 111 \end{array}$ Revert to expanded methods if the children experience any difficulty. Solve missing numbers and operations	
2. Augmentation Structure Partition into hundreds, tens, ones and decimal fractions and recombine Either partition both numbers and recombine or partition the second number only e.g. $\begin{aligned} 35.8+7.3 & =35.8+7+0.3 \\ & =42.8+0.3 \quad \text { mentally } \end{aligned}$ Add a near-multiple of 10,100 or 1000 , then adjust Continue as in Year 2, 3, 4 and 5 but with appropriate numbers including extending to adding $0.9,1.9,2.9$ etc	

Strategy \& guidance	
Understand the operation of subtraction. Estimate answer using rounding before calculating. Check answers using inverse operation. Build on previous years. Children discuss the efficiency of their written methods. They consider different calculations and choose the appropriate method:	
An efficient written method, a mental method (with jottings if necessary), or a calculator.	
Each child should have worked through the progression in compact methods using decomposition method outlined in Years 4 and 5.	
Extend to three decimal places and larger numbers.	
Children discuss the efficiency of their written methods. They consider different calculations and choose the appropriate method : An efficient written method, a metal method (with jottings if necessary), Or a calculator.	
Each child should have worked through the progressing compact methods using decomposition method outlined in Years 4 and 5.	

Multiplication

Division

Strategy \& guidance	CPA
Solve multi-step problems involving all four operations.	
Use estimation to check answers to calculations and determine, deciding which operations and methods to use and why.	
Use knowledge of the order of operations to carry out calculations involving the four operations.	
Understand fractions as operators.	
Use formal written methods	
Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context.	
Long division: (Start with low two-digit numbers)	
Estimate and check calculations.	
$2 3 \longdiv { 2 0 }$	
23	
$\begin{gathered} 19 \lcm{456} \\ \frac{38}{76} \\ -76 \\ \hline-0 \end{gathered}$	
extending to remainders with quotients expressed as: - Whole numbers - Fractions - Decimals.	
Children use their knowledge of the order of operations to carry out calculations involving four operations.	
Understand fractions as an operator	
Understand that dividing proper fractions by whole numbers involves multiplication and can represent this as a diagram.	
Division of decimal numbers by one-digit whole number, initially in practical contexts involving measures and money.	
Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.	

Strategy \& guidance	CPA
Ratio and Proportion Solve problems involving the relative sizes of 2 quantities where missing values can be found by using integer multiplication and division facts. Solve problems involving the calculation of percentages (for example such as 15% of 360) and the use of percentages for comparison. Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.	
Continue to develop mental strategies: Build on Year 5. Divide numbers by 5 by dividing by 10 and then doubling the answer. The same applies to dividing a number by $50(100 \div 10) \times 2$. Divide numbers by 25 by dividing by 100 and doubling and doubling again (x 4).	
Factor pairs and prime factors. (Prime factors are factors that are prime numbers eg 2, 3, 5, 7, 11, 13) Identify common factors. Investigate prime factors. Use tests of divisibility. Use factors to calculate 35×14. $\begin{aligned} & 7 \times 5 \times 2 \times 7 \\ & (5 \times 2) \times(7 \times 7)= \\ & 10 \times 49=490 \end{aligned}$ Use place value and partitioning to calculate mentally. Strategies include: - Use knowledge of number pairs to 10 to find number pairs to 1 (whole) Round and adjust: 1.2×9 Round 9 to 10 1.2×10 Subtract 1.2 Partition numbers into a multiple of the divisor (3) and whatever is left-over. $\begin{aligned} & \text { eg } 4.5 \div 3= \\ & 3+1.5 \end{aligned}$	
Divide proper fractions by whole numbers (for example $1 / 3 \div 2$ $=1 / 6$). Associate a fraction with division and calculate decimal fraction equivalents (for example 0.375) for a simple fraction eg $3 / 8$. Use division methods in cases where the answer has up to 2 decimal places.	

Strategy \& guidance	CPA									
Scaling in division										
Introduce scale factors										
Scale numbers up and down by a scale factor (including half as big as a factor of 0.5)										
3 units										
scaled by a factor of 5										
\|							l	l		
15 units										
Use this knowledge to scale recipes up or down.										
Convert units of measure.										
Understand the two structures in division										
Pupils understand fractions as operator so $3 \div 4$ can also be expressed 3 out of 4 or written $3 / 4$. metric and Imperial units in common use. Simplify fractions by cancelling Understand order of operations.										
Consolidate Year 5 and use mental strategies, diagrams, jottings to solve problems involving fractions and proportion.										
Written methods Expanded methods for long division.										
Remember to use rounding to estimate the answer before commencing with the calculation.										
Use these practical activities to prepare children for expanded written methods for long division.										
Chunking method for long division										
$288 \div 24=$										
12										
$\text { 24) } \begin{aligned} & \frac{288}{48}(24 \times 10) \\ & -\frac{48(24 \times 2)}{\underline{0}} \end{aligned}$										
Answer $=12$ groups of 24										
Move onto compact method for short division (see below)										
Finally by the end of Year 6 children should be able to carry out long division on four digits (Th H TU or HTU.t or TU.tu by a twodigit number)										

